[1] C. Jobanputra, J. Bavishi and N. Doshi, "Human Activity Recognition: A Survey," Procedia-Computer Science, vol. 155, no. 2018, pp. 698–703, DOI: 10.1016/j.procs.2019.08.100, 2019.
[2] S. Yousefi, H. Narui, S. Dayal, S. Ermon and S. Valaee, "A Survey on Behaviour Recognition Using WiFi Channel State Information," IEEE Communications Magazine, vol. 55, no. 10, pp. 98–104, 2017.
[3] J. Yang, Y. Liu, Z. Liu, Y. Wu, T. Li and Y. Yang, "A Framework for Human Activity Recognition Based on WiFi CSI Signal Enhancement," International Journal of Antennas and Propagation, vol. 2021, DOI: 10.1155/2021/6654752, 2021.
[4] Z. Chen, L. Zhang, C. Jiang, Z. Cao and W. Cui, "WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM," IEEE Transactions on Mobile Computing, vol. 18, no. 11, pp. 2714–2724, DOI: 10.1109/TMC.2018.2878233, 2019.
[5] R. N. S. Husna, A. R. Syafeeza, N. A. Hamid, Y. C. Wong and R. A. Raihan, "Functional Magnetic Resonance Imaging for Autism Spectrum Disorder Detection Using Deep Learning," Jurnal Teknologi, vol. 83, no. 3, pp. 45–52, DOI: 10.11113/JURNALTEKNOLOGI.V83.16389, 2021.
[6] D. Azzouz and S. Mazouzi, "A Hyper-surface-based Modeling and Correction of Bias Field in MR Images," Jordanian Jour. of Computers and Information Technology (JJCIT), vol. 7, no. 3, p. 223, 2021.
[7] Y. C. Wong, L. J. Choi, R. S. S. Singh, H. Zhang and A. R. Syafeeza, "Deep Learning-based Racing BIB Number Detection and Recognition," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 5, no. 3, pp. 181–194, DOI: 10.5455/JJCIT.71-1562747728, Dec. 2019.
[8] D. Singh et al., "Human Activity Recognition Using Recurrent Neural Networks," Proc. of the Int. Cross-domain Conf. for Machine Learning and Knowledge Extraction (CD-MAKE 2017), pp. 267–274, vol. 10410 LNCS, DOI: 10.1007/978-3-319-66808-6_18, 2017.
[9] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang and H. Liu, "E-eyes: Device-free Location-oriented Activity Identification Using Fine-grained WiFi Signatures," Proceedings of the 20th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 617–628, DOI: 10.1145/2639108.2639143, 2014.
[10] W. Wang, A. X. Liu, M. Shahzad, K. Ling and S. Lu, "Device-free Human Activity Recognition Using Commercial WiFi Devices," IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1118–1131, DOI: 10.1109/JSAC.2017.2679658, 2017.
[11] Z. Wang et al., "A Survey on Human Behavior Recognition Using Channel State Information," IEEE Access, vol. 7, no. October, pp. 155986–156024, DOI: 10.1109/ACCESS.2019.2949123, 2019.
[12] S. M. Bokhari, S. Sohaib, A. R. Khan, M. Shafi and A. R. Khan, "DGRU Based Human Activity Recognition Using Channel State Information," Measurement, vol. 167, p. 108245, 2021. [13] W. Maass, "Networks of Spiking Neurons: The Third Generation of Neural Network Models," Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.
[14] S. Ghosh-Dastidar and H. Adeli, "Spiking Neural Networks," International Journal of Neural Systems, vol. 19, no. 4, pp. 295–308, DOI: 10.1142/S0129065709002002, Aug. 2009.
[15] H. Hazan, D. J. Saunders, H. Khan, D. Patel and D. T. Sanghavi, "BindsNET: A Machine Learning- oriented Spiking Neural Networks Library in Python," Frontiers. Neuroinformatics, vol. 12, no. December, pp. 1–18, DOI: 10.3389/fninf.2018.00089, 2018.
[16] B. Meftah, O. Lézoray, S. Chaturvedi, A. A. Khurshid and A. Benyettou, "Image Processing with Spiking Neuron Networks," Stud. Comput. Intell., vol. 427, pp. 525–544, DOI: 10.1007/978-3-642- 29694-9_20, 2013.
[17] W. N. Lo and Y. C. Wong, "Spiking Neural Network for Energy Efficient Learning and Recognition," International Journal of Scientific & Technology Research, vol. 9, no. 11, pp. 166–174, 2020.
[18] M. Alawad, H. J. Yoon and G. Tourassi, "Energy Efficient Stochastic-based Deep Spiking Neural Networks for Sparse Datasets," Proc. of the IEEE Int. Conf. on Big Data (Big Data), vol. 2018-Jan., pp. 311–318, DOI: 10.1109/BigData.2017.8257939, Boston, MA, USA, 2017.
[19] T. Obo, N. Kubota and B. Hee Lee, "Localization of Human in Informationally Structured Space Based on Sensor Networks," Proc. of the IEEE International Conference on Fuzzy Systems, DOI: 10.1109/FUZZY.2010.5584888, Barcelona, Spain, 2010.
[20] A. Antonietti, C. Casellato, J. A. Garrido, E. D’Angelo and A. Pedrocchi, "Spiking Cerebellar Model with Multiple Plasticity Sites Reproduces Eye Blinking Classical Conditioning," Proc. of the 7th Int. IEEE/EMBS Conf. on Neural Eng. (NER), vol. 2015-July, pp. 296–299, Montpellier, France, 2015.
[21] A. M. George, D. Banerjee, S. Dey, A. Mukherjee and P. Balamurali, "A Reservoir-based Convolutional Spiking Neural Network for Gesture Recognition from DVS Input," Proc. of the IEEE International Joint Conference on Neural Networks (IJCNN), DOI: 10.1109/IJCNN48605.2020.9206681, Glasgow, UK, 2020.
[22] J. J. Wade, L. J. McDaid, J. A. Santos and H. M. Sayers, "SWAT: A Spiking Neural Network Training Algorithm for Classification Problems," IEEE Transactions on Neural Networks, vol. 21, no. 11, pp. 1817–1830, DOI: 10.1109/TNN.2010.2074212, 2010.
[23] A. Jeyasothy, S. Sundaram and N. Sundararajan, "SEFRON: A New Spiking Neuron Model with Time- varying Synaptic Efficacy Function for Pattern Classification," IEEE Transactions on Neural Networks Learn. Syst., vol. 30, no. 4, pp. 1231–1240, DOI: 10.1109/TNNLS.2018.2868874, 2019.
[24] T. J. Strain, L. J. McDaid, T. M. McGinnity, L. P. Maguire and H. M. Sayers, "An STDP Training Algorithm for a Spiking Neural Network with Dynamic Threshold Neurons," International Journal of Neural Systems, vol. 20, no. 6, pp. 463–480, DOI: 10.1142/S0129065710002553, 2010.
[25] GitHub, "GitHub-Hirokazu-Narui/LSTM_wifi_activity_recognition," [Online], Available: https://github .com/Hirokazu-Narui/LSTM_wifi_activity_recognition, (Accessed ON Jan. 03, 2021).