[1] Health Organization,[Online], Available: http://www.who.int/diabetes/en, accessed in Apr. 2019.
[2] World Health Organization–Diabetes Program,[Online], Available: http://www.World.who.int/diabetes /action_online/basics/en/index.html, accessed in Dec. 2014.
[3] Atlas, Diabetes, "International Diabetes Federation,"[Online], Available: http://www.idf.org/diabetesatlas/5e/es/prologo, accessed in Dec. 2014.
[4] C. Klonoff, B. Buse, L. Nielsen, X Guan, L. Bowlus, H. Holcombe, E. Wintle and G. Maggs, ''Exenatide Effects on Diabetes, Obesity, Cardiovascular Risk Factors and Hepatic Biomarkers in Patients with Type 2 Diabetes Treated for at Least 3 Years,'' Current Medical Research and Opinion, vol. 24, no. 1, pp. 275-286, Dec. 2007.
[5] B. Thomas and V. Tresp, "A Nonlinear State Space Model for the Blood Glucose Metabolism of a Diabetic (Ein nichtlineares Zustandsraummodell für den Blutglukosemetabolismus eines Diabetikers)," at-Automatisierungstechnik, vol. 50, no. 5, pp. 228-236, Sept. 2009.
[6] S. Vashist, D. Zheng, K. Al-Rubeaan, J. Luong and F. Sheu, "Technology behind Commercial Devices for Blood Glucose Monitoring in Diabetes Management: A Review," Analytica Chimica Acta, vol. 703, no. 1, pp. 124–136, Jul. 2011.
[7] H. Park, K. Lee, H. Yoon and H. Nam, ''Design of a Portable Urine Glucose Monitoring System for Health Care,'' Computers in Biology and Medicine, vol. 35, no. 4, pp. 275-286, Apr. 2004.
[8] American Diabetes Association,[Online], Available: http://www.diabetes.org/living-with-diabetes/treatment-and-care/medication/insulin/insulin-pumps.html, accessed in Apr. 2019.
[9] M. Otoom, H. Alshraideh, H. Almasaeid, D. López-de-Ipiña and José Bravo, ''A Real-time Insulin Injection System," Proceedings of the Ambient Assisted Living and Active Aging- 5th International Work-Conference (IWAAL), pp. 120–127, Dec. 2013.
[10] A. Fidimahery and M. Milgram, "Applying Neural Networks to Adjust Insulin-pump Doses," Proceedings of the 7th IEEE Signal Processing Society Workshop, Neural Networks for Signal Processing VII, pp. 182-188, Sept. 1997.
[11] R. DeFronzo, "Insulin Resistance, Lipotoxicity, Type 2 Diabetes and Atherosclerosis: The Missing Links. The Claude Bernard Lecture 2009," Diabetologia, vol. 53, no.7, pp. 1270-1287, Apr. 2010.
[12] T. Shimauchi, N. Kugai, N. Nagata and O. Takatani, ''Microcomputer-aided Insulin Dose Determination in Intensified Conventional Insulin Therapy," IEEE Transactions on Biomedical Engineering, vol. 35, no. 2, pp. 167-171, Feb. 1988.
[13] T. Volker, T. Briegel and J. Moody, "Neural-network Models for the Blood Glucose Metabolism of a Diabetic," IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 1204-1213, Sept. 1999.
[14] E. Caballero-Ruiz, G. García-Sáez, M. Rigla, M. Balsells, B. Pons, M. Morillo, E. J. Gómez and M. E. Hernando, ''Automatic Blood Glucose Classification for Gestational Diabetes with Feature Selection: Decision Trees vs. Neural Networks," Proc. of XIII Mediterranean Conference on Medical and Biological Engineering and Computing, pp. 1370-1373, Sept. 2013.
[15] M. Vasudev and J. Johnston, "Inpatient Management of Hyperglycemia and Diabetes," Clinical Diabetes'', vol. 29, no. 1, pp. 3-9, Jan. 2011.
[16] A. Chennakesava, Fuzzy Logic and Neural Networks: Basic Concepts & Applications, India: New Age International, 2008.
[17] H. Simon, Neural Networks: A Comprehensive Foundation, New Jersey: Mc Millan, 2010.
[18] H. Demuth, M. Beale, O. De Jess and M. Hagan, Neural Network Design, 2nd Edition, USA: Martin Hagan, 2014.
[19] S. Milton and J. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and Computing Sciences, USA: McGraw-Hill Education, 2002.
[20] E. Lehmann and G. Casella, Theory of Point Estimation, Berlin: Springer Sci. & Bus. Media, 2006.
[21] Q. Wang, P. Molenaar, S. Harsh, K. Freeman, J. Xie, C. Gold, M. Rovine and J. Ulbrecht, "Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose and Meal Intake: An Extended Kalman Filter Approach," Journal of Diabetes Science and Technology, vol. 8, no. 2, pp. 331-345, March 2014.
[22] S. Pappada, B. Cameron, P. Rosman, R. Bourey, T. Papadimos, W. Olorunto and M. Borst, "Neural Network-based Real-time Prediction of Glucose in Patients with Insulin-dependent Diabetes," Diabetes Technology & Therapeutics, vol. 13, no. 2, pp. 135-141, Feb. 2011.
[23] A. Bani-Younes, Modeling Human Body Responsiveness to Glucose Intake and Insulin Injection Using Neural Networks, Master Thesis, Jordan: Yarmouk University, 2014.
[24] O. Orozco, E. Castañeda, A. Rodríıguez-Herrero, G. García-Saéz and M. Elena Hernando, "Glucose-Insulin Regulator for Type 1 Diabetes Using High-order Neural Networks," International Journal of Artificial Intelligence and Neural Networks (IJAINN), vol. 4, no. 3, pp. 40-47, Sept. 2014.
[25] S. Mougiakakou, A. Prountzou, D. Iliopoulou, K. Nikita, A. Vazeou and C. Bartsocas, "Neural Network Based Glucose-insulin Metabolism Models for Children with Type 1 Diabetes," Proceedings of the 28th IEEE EMBS Annual Int. Conf., New York City, USA, pp. 3545-3548, Aug. 30-Sept. 3, 2006.
[26] G. Robertson, E. D. Lehmann, W. A. Sandham and D. J. Hamilton, "Blood Glucose Prediction Using Artificial Neural Networks Trained with the AIDA Diabetes Simulator: A Proof-of-concept Pilot Study," Journal of Electrical and Computer Engineering, vol. 2011, Article ID 681786, pp. 1-11, 2011.
[27] W. A. Sandham, M. Z. Diaz, D. J. Hamilton, E. D. Lehmann, P. Tatti and J. Walsh, "Electrical and Computer Technology for Effective Diabetes Management and Treatment," Special Issue of the Journal of Electrical and Computer Engineering, 2011.
[28] W. A. Sandham, D. J. Hamilton, D. Nikoletou, C. MacGregor, A. Japp and K. Patterson, "Use of Artificial Neural Networks for Improved Diabetes Therapy," Proc. of Irish Signals and Systems Conference (ISSC-98), Dublin Institute of Technology, Dublin, Ireland, pp. 553-560, 25-26 June 1998.
[29] W. A. Sandham, D. Nikoletou, D. J. Hamilton, K. Paterson, A. Japp and C. MacGregor, "Blood Glucose Prediction for Diabetes Therapy Using a Recurrent Artificial Neural Network," Proc. of the IX European Signal Processing Conference (Eusipco-98), Island of Rhodes, Greece, pp. 673-676, 8-11 Sep. 1998.
[30] W. A. Sandham, D. J. Hamilton, A. Japp and K. Patterson, "Neural Network and Neuro-fuzzy Systems for Improving Diabetes Therapy," Proc. of the 20th Int. Conf. of the IEEE Eng. in Med. & Biol. Soc., Hong Kong Convention and Exhibition Centre, Hong Kong, vol. 20, Part 3/6, pp. 1438-1441, 1998.
[31] C. Pérez-Gandía, A. Facchinetti, G. Sparacino, C. Cobelli, E. J. Gómez, M. Rigla, A. de Leiva and M. E. Hernando, "Artificial Neural Network Algorithm for Online Glucose Prediction from Continuous Glucose Monitoring," Diabetes Technology & Therapeutics, vol. 12, no 1, pp.81-88, Jan. 2010.
[32] J.-W. Chen, , K. Li, P. Herrero, T. Zhu and P. Georgiou, "Dilated Recurrent Neural Network for Short-time Prediction of Glucose Concentration," Proc. of the 23rd European Conf. on Artificial Intelligence (IJCAI-ECAI), Int.l Workshop on Knowledge Discovery in Healthcare Data, pp. 69-73, 2018.
[33] K. Li, J. Daniels, C. Liu, P. Herrero-Vinas and P. Georgiou, "Convolutional Recurrent Neural Networks for Glucose Prediction," IEEE Journal of Biomedical and Health Informatics, DOI: 10.1109/JBHI.2019.2908488, Apr. 2019.